Lung Inflammatory Disease Program of Excellence in Glycosciences

Module 1

Chemo-enzymatic synthesis of glycans

Presented by: Corwin Nycholat

Carbohydrate Synthesis – The toolbox

Chemical synthesis

Enzymatic synthesis

Regioselectivity - reaction at one site (one hydroxyl group)

Stereoselectivity – formation of one stereoisomer over another

Enzymes allow formation of defined stereo- and regiospecific products

Glycosyltransferases

Biosynthesis of oligosaccharides

Formation of defined stereo- and regiospecific products with remarkable rate acceleration of the reaction

Leloir enzymes – glycosyltransferases which utilize activated glycosyl esters of nucleoside mono- or di-phosphates as glycosyl donors (Luis F. Leloir)

Advantages:	<u>Limitations for synthesis:</u>
· · · · · · · · · · · · · · · · · · ·	——————————————————————————————————————

Formation of defined products

Substrate specificity

No protecting group chemistry High cost of glycosyl nucleotide

donor

Mild conditions (Room temperature, aqueous conditions)

Limited enzyme availability.

Enzyme activity: moles of substrate converted per unit time

1 enzyme unit (U) = 1 μ mol min⁻¹

Carbohydrate Synthesis

Chemo-enzymatic synthesis

Combination of both chemical and enzymatic methods

Functional group modifications

(chemical)

Where to start?

Installation of aglycone (chemical)

Retro-Synthetic analysis of glycan structure

A technique for solving problems in the planning of organic syntheses (E.J. Corey). The goal is structural simplification through bond disconnection.

Planning an enzymatic reaction

Reaction steps

- 1. Setup and initiation
- 2. Monitoring the reaction
- 3. Work-up and purification

Aim: Synthesis of 9-N-BPC-NeuAc α 2-6-LacNAc-ethyl azide on a 2 mg scale .

Purification of the product by C-18 reverse phase chromatography taking advantage of the hydrophobic BPC handle.

Setup and Initiation of the reaction

- 1. Determine the limiting reagent
- 2. Calculate the quantities of donor and acceptor required
- 3. Analyze reagents by thin layer chromatography (TLC)
- 4. Combine donor and acceptor in reaction vessel (eppendorf) in reaction buffer adjust pH (~ 8)
- 5. Calculate the quantity of enzyme required (reaction time ~ 1 h)
- 6. Add enzyme to reaction and mix at 37 °C

Monitoring the reaction

The progress of the reaction is assessed by TLC

Work-up and purification

Enzymes Buffer salts

Purification of the product – removal of impurities

Methods:

C-18 Solid-phase extraction (polarity)

Gel Filtration (size exclusion) Demonstration

Preparation of glycans for microarray printing (Module 2)

Reactive amine...

for printing on NHS-activated slides:

Preparation of glyco-lipids for cell targeting (Module 3)

for preparation of glyco-lipids for cell targeting: